Verified integration of linear nth order ODEs using large steps

نویسنده

  • Markus Neher
چکیده

The solution y(x) of an IVP for a linear ODE with analytic coefficient functions is represented as a power series. A high–order Taylor polynomial is used for an approximate numerical solution. The Taylor remainder series is rigorously estimated by some geometric series. The method has been implemented and tested on a computer. Guaranteed enclosures are achieved by taking into account all roundoff errors. AMS Subject Classification: 65G40, 65L05, 65L70.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize

Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...

متن کامل

Chebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation

In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...

متن کامل

Conditional symmetries for ordinary differential equations and applications

We refine the definition of conditional symmetries of ordinary differential equations and provide an algorithm to compute such symmetries. A proposition is proved which provides criteria as to when the symmetries of the root system of ODEs are inherited by the derived higher-order system. We provide examples and then investigate the conditional symmetry properties of linear nth-order equations ...

متن کامل

Verified High-order Integration of Daes and Higher-order Odes

Within the framework of Taylor models, no fundamental difference exists between the antiderivation and the more standard elementary operations. Indeed, a Taylor model for the antiderivative of another Taylor model is straightforward to compute and trivially satisfies inclusion monotonicity. This observation leads to the possibility of treating implicit ODEs and, more importantly, DAEs within a ...

متن کامل

Paraconformal geometry of nth order ODEs, and exotic holonomy in dimension four

We characterise nth order ODEs for which the space of solutions M is equipped with a particular paraconformal structure in the sense of [2], that is a splitting of the tangent email [email protected] email [email protected]

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 186  شماره 

صفحات  -

تاریخ انتشار 2007